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ABSTRACT

Calculated is the probability of detecting coherent
light in the presence of background light that has passed
through a narrowband filter of either rectangular or Lorentz
frequency characteristic. Both signal and background fall
on a photoelectric surface whose emitted electrons are
counted and subjected to a randomized decision procedure

that yields a pre-assigned false—alarm probability.
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A photoelectric counter is to detect the signal from an ideal
laser in the presence of incoherent background light. The incident light
passes through a filter whose passband, of width W, is centered at the
frequency Q of the signal, and through a polarizer that removes all
background light polarized in a plane perpendicular to that of the
signal, after which the light falls on a photoelectric surface. The
signal, when present, has constant amplitude during the entire interval
(-1/2 T, 1/2 T) of observation.

When the passband of the filter is so broad that WT >> 1, the
distribution of the number n of photoelectrons is approximately Poisson,
and this is the usual assumption in analyzing the performance of laser
radar receivers.l If the passband could be made so narrow that WT << 1,
the number n would have a Bose or a Laguerre distribution, depending on
whether the signal is absent or present. Detection probabilities under
this condition have been published.2 So narrow a passband is difficult
to attain in practice, especially when the frequency of the signal may
be uncertain because of Doppler shift. The probability of detection
should be worked out for intermediate values of WT in order to assess
the accuracy of calculations based on the simplifying assumptions
WI << 1 or WT >> 1. Some results of such an analysis are presented here.

Let V(t) represent the complex envelope of the plane-polarized
light field at the photoelectric surface. The probability P(n) that
exactly n photoelectrons are emitted during the interval (-1/2 T, 1/2 T)

is given by a modified Poisson distribution,



P(n) = <xn e-x/n!),
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where o is a constant proportional to the quantum efficiency of the sur-
face and to its area.3 The average indicated by ( ) is taken over the
ensemble of circular-complex Gaussian processes V(t).

When the signal is present (hypothesis Hl)’
V(t) = s(t) + N(t); (2)

when it is not (hypothesis Hgy), V(t) = N(t). Here S(t) = A eiw represents
the laser field of constant amplitude A and random phase y; N(t) is the
complex envelope of the linearly polarized background field. The complex
autocovariance, or temporal coherence function, of the background
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the spectral density
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of the background is proportional to |y(w)|2, where y(w) is the transfer
function of the filter, angular frequencies w being referred to the signal
frequency Q as origin.

By expanding the field V(t) in terms of the orthonormal eigen-
functions fj(t) of the integral equation
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it can be shown that the number n of photoelectrons can be written as

n = § nj: ‘ (5)
31
where the n.'s are statistically independent, integral-valued random
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variables having under hypothesis Hy Bose distributions pjo (nj) and

under hypothesis H; Laguerre distributions p§l)(nj). These distributions
are
(0) m
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N is the total average number of electrons in (-1/2 T, 1/2 T) due to the
background, S is the total average number that would be ejected by the

signal S(t) alone, and Lp(x) is the m-th Laguerre polynomial. Here

(o] oo

Z uy = 1, ZUj = 1. (11)

j=1 j=1
The distributions Py(n) and Pj(n) of the total number n of electrons are
easily computed digitally by convolving the component distributions in

(6) and (7) for which uy and oy are significantly greater than zero.




The detection probabilities have been calculated for a randomized
detector that chooses H; (signal present) whenever the number n of
electrons exceeds a certain integral decision level 6. When n < 86, the
detector chooses Hy (signal absent). When n = 6, hypothesis H; is
chosen with probability £, 0 = f < 1. The values of 6 and f are selected

so that the false-alarm probability

[es]

Qy = £ Po(ej + Z Py (k) (12)
k=6+1

takes on a pre-assigned value. To find f and 6, Py(k) is summed from
k=0 until the sum I exceeds 1 - Qp. The value of k at which this first

happens is 0, and

£= (2 -1+Qp)/Pg(0).

The probability Qg of detection is then given by

©

Qq = £ P;(6) + Z Py (k). (13)
k=6+1




(a) Rectangular Spectrum

When the filter has a rectangular frequency characteristic, the
complex autocovariance of the background light striking the photosensitive

surface is

(1) = @(0) sin(m Wr)/(m W), (14)

and the integral equation (4) is the one treatéd by Slepian and Pollak,5

The eigenfunctions are the angular prolate spheroidal wave functions
' .
fa(t) = u "1(2/T)7% Sy (c, 2t/T) (15)

with ¢ = 7 WI/2 and u, the normalization factor given by

1
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In the notation of Stratton et aZ.,6
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Son(c, x) =de(c|0n) Ph(x) (17)
k=0

in terms of the Legendre polynomials Pn(x), and by their orthogonality

over (-1, 1),

up? =2 Z (2k + 1)71 [dy(c|On)]2. (18)
k=0

The eigenvalues of (4) are, in the notation of Slepian and Pollak,5

U = Ar(c) /WT. (19)

The quantities o, in (10) are

k



o = 2uy ukfz ISOk(C’ O){z, (20)

for with S(t) constant over (-1/2 T, 1/2 T), we need only to evaluate

. 7
the Fourier transform
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at w = 0. Here oy = 0 for k odd.

By using these formulas we calculated the distributions in (6) and
(7), convolved them to determine the distributions Py(k) and P;(k), and
used (12) and (13) to work out the probabilities of detection, which are
plotted in Figs. 1 - 3 for various values of false-alarm probability Qg,
mean number N of background photoelectrons, and time-bandwidth product
¢ =1 WL/2. For a fixed background illuminance, the number N increases,
and the probability Q4 of detection decreases, as the bandwidth W of the
filter increases. For our present purboses it seemed more instructive
to avoid this trivial effect and keep the total average number N of

electrons fixed. The detection probability then increases as the filter

passband widens and the distributions become more nearly Poisson.




(b) Lorentz Spectrum

When the filter has the pass characteristic of a simply resonant
linear system, the spectral density of the background light falling on

the photosurface has the Lorentz form
o(w) = 2W ¢(0) (w2 + W2)-1, (22)

and its temporal coherence function is

W]

p(1) = (0) e (23)

The integral equation (4) is then easily solved; the eigenfunctions
are sinusoidal.8

The eigenvalues yy do not drop off with increasing k rapidly
enough to make it feasible to calculate the distribution Py(k) by convo-
lution. Instead we determined it by an ingenious recurrent equation due
to G. Bédard.9 The generating function of the distribution {P;(k)} has

the form4

(o]
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m@)rlwﬁ%l—@SﬂU+Nﬂl—wn, (24)
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where gy(s) is the generating function of {Py(k)}. We can determine
{P,(k)}, therefore, by convolving the sequence {Py(k)}, k = 0, 1, 2,...,
with the quasi-distributions {qj(k)} whose generating functions are the
exponential factors in (24). These quasi-distributions are given by

a3 = vi expl-(1 - v)) 551 1 V-0 - w2 syivg), (25)
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where L ~’(x) is a generalize aguerre polynomial. t can easily be
h 1) ) g lized Lag 1 1.10 ¢ 1y b

computed from its recurrent equation,

G+ 15V = k-0 L e - - P w,
P& =1, D) = -x. (26)

In this calculation only the even eigenfunctions fk(t) need to be
included,

= -1 .
£ (t) u 7t cos wp t; (27)

the odd ones yield Uj = 0 in (10). The eigenvalues W, are now

e = m(m? + 6k?)”1, m = WI/2, (28)

where ek is the k-th root of the transcendental equation

Gk tan ek = m, Gk =W T/2, (29)

which is easily solved by Newton's method. The normalization constant

U is given by

uk2 =0, (1+ uk)/wn, (30)
and

o = 2m My Gk—z 1+ pk)"l. 3L

The detection probabilities for various values of WT are plotted in
Figs. 4-6. The curves have the same general behavior as those for the

rectangular spectrum.
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Figure Captions

Fig. 1. Probability of detection vs. average number S of signal
counts for rectangular background spectrum; Qg = 102, N = 0.5.

The curves are indexed with the value of ¢ = m WT/2.

Fig. 2. Probability of detection vs. average number S of signal
counts for rectangular background spectrum; Qg = 10‘2, N = 2.0.
The curves are indexed with the value of ¢ = m WT/2.

Fig. 3. Probability of detection vs. average number S of signal

counts for rectangular background spectrum; Qp = 10’“, N = 0.5.
The curves are indexed with the value of ¢ = 7 WT/2.

Fig. 4. Probability of detection vs. average number S of signal
counts for Lorentz background spectrum; Qg = 10"2, N = 0.5. The

curves are indexed with the value of WT.

Fig. 5. Probability of detection vs. average number S of signal
counts for Lorentz background spectrum; Qg = 1072, N = 2.0.
The curves are indexed with the value of WT.

Fig. 6. Probability of detection vs. average number S of signal
counts for Lorentz background spectrum; Qg = 10‘”, N = 0.5,

The curves are indexed with the value of WT.
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— Fig. 1. Probability of detection vs. average number S of signal
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Fig. 3. Probability of detection vs. average number S of signal

| counts for rectangular background spectrum; Qg = 10‘”, N = 0.5.

The curves are indexed with the value of ¢ = 1 WI/2.
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Fig. 6. Probability of detection vs. average number S of signal

counts for Lorentz background spectrum; Qp = 10~%, N = 0.5. —

The curves are indexed with the value of WT.
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